7,326 research outputs found

    Abelian-Higgs-Navier-Stokes Hydrodynamics for Nematic Films with Defects

    Full text link
    A new theory of hydrodynamics of uniaxial nematic liquid crystal films in the presence of defects is developed. A gauge field incorporating screening is introduced, resulting in the static elastic free energy having the form of a two-dimensional Abelian-Higgs model. Hydrodynamic equations are derived via the standard methods of de~Groot and Mazur. By working in the vicinity of the Bogomol'nyi equations consequences for defect centre motion are outlined.Comment: 12 page

    Testing the simplifying assumption in high-dimensional vine copulas

    Full text link
    Testing the simplifying assumption in high-dimensional vine copulas is a difficult task. Tests must be based on estimated observations and amount to checking constraints on high-dimensional distributions. So far, corresponding tests have been limited to single conditional copulas with a low-dimensional set of conditioning variables. We propose a novel testing procedure that is computationally feasible for high-dimensional data sets and that exhibits a power that decreases only slightly with the dimension. By discretizing the support of the conditioning variables and incorporating a penalty in the test statistic, we mitigate the curse of dimensions by looking for the possibly strongest deviation from the simplifying assumption. The use of a decision tree renders the test computationally feasible for large dimensions. We derive the asymptotic distribution of the test and analyze its finite sample performance in an extensive simulation study. The utility of the test is demonstrated by its application to six data sets with up to 49 dimensions

    Addressing the Reprographic Revolution: Compensating Copyright Owners for Mass Infringement

    Get PDF
    This Article addresses the unique problems created by the reprographic revolution. Part I discusses recent legislative attempts to relieve the strain placed on existing copyright law by developing reprographic technologies. Using the recent Betamax case as an example, part II criticizes judicial efforts to apply traditional copyright doctrine to issues involving reprographic technologies. Finally, part III proposes a framework for devising, an enforcement scheme to protect copyright holders\u27 rights without denying the public the many benefits offered by reprographic technologies. The Article outlines an approach tailored to meet the special problems associated with each of the three basic reprographic technologies: the audiorecorder, videocassette recorder ( VCR ), and photocopier. Drawing from the experiences of other industrialized countries, the Article recommends the adoption of varying excise tax schemes aimed at the apparent sources of infringement - reprographic equipment and associated software

    Accurate Calculation of Magnetic Fields in the End Regions of Superconducting Accelerator Magnets using the BEM-FEM Coupling Method

    Get PDF
    In this paper a new technique for the accurate calculation of magnetic fields in the end regions of superconducting accelerator magnets is presented. This method couples Boundary Elements (BEM) which discretize the surface of the iron yoke and Finite Elements (FEM) for the modelling of the nonlinear interior of the yoke. The BEM-FEM method is therefore specially suited for the calculation of 3-dimensional effects in the magnets, as the coils and the air regions do not have to be represented in the finite-element mesh and discretization errors only influence the calculation of the magnetization (reduced field) of the yoke. The method has been recently implemented into the CERN-ROXIE program package for the design and optimization of the LHC magnets. The field shape and multipole errors in the two-in-one LHC dipoles with its coil ends sticking out of the common iron yoke is presented

    The Pairing Matrix in Discrete Electromagnetism On the Geometry of Discrete de Rham Currents

    Get PDF
    We introduce pairing matrices on simplicial cell complexes in discrete electromagnetism as a means to avoid the explicit construction of a topologically dual complex. Interestingly, the Finite Element Method with first-order Whitney elements â when it is looked upon from a cell-method perspective â features pairing matrices and thus an implicitly defined dual mesh. We show that the pairing matrix can be used to construct discrete energy products. In this exercise we find that different formalisms lead to equivalent matrix representations. Discrete de Rham currents are an elegant way to subsume these geometrically equivalent but formally distinct ways of defining energy-products

    Microstructural characterization of AISI 431 martensitic stainless steel laser-deposited coatings

    Get PDF
    High cooling rates during laser cladding of stainless steels may alter the microstructure and phase constitution of the claddings and consequently change their functional properties. In this research, solidification structures and solid state phase transformation products in single and multi layer AISI 431 martensitic stainless steel coatings deposited by laser cladding at different processing speeds are investigated by optical microscopy, Scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), orientation imaging microscopy (OIM), ternary phase diagram, Schaeffler and TTT diagrams. The results of this study show how partitionless solidification and higher solidification rates alter the microstructure and phase constitution of martensitic stainless steel laser deposited coatings. In addition, it is shown that while different cladding speeds have no effect on austenite–martensite orientation relationship in the coatings, increasing the cladding speed has resulted in a reduction of hardness in deposited coatings which is in contrast to the common idea about obtaining higher hardness values at higher cladding speeds.

    Accurate Calculation of Fringe Fields in the LHC Main Dipoles

    Get PDF
    The ROXIE program developed at CERN for the design and optimization of the superconducting LHC magnets has been recently extended in a collaboration with the University of Stuttgart, Germany, with a field computation method based on the coupling between the boundary element (BEM) and the finite element (FEM) technique. This avoids the meshing of the coils and the air regions, and avoids the artificial far field boundary conditions. The method is therefore specially suited for the accurate calculation of fields in the superconducting magnets in which the field is dominated by the coil. We will present the fringe field calculations in both 2d and 3d geometries to evaluate the effect of connections and the cryostat on the field quality and the flux density to which auxiliary bus-bars are exposed

    mbspex driver software for PEXOR/KINPEX readout boards

    Get PDF
    • …
    corecore